Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427657

RESUMO

Epigallocatechin gallate (EGCG) is a polyphenolic component of green tea that has anti-oxidative and anti-inflammatory effects in neurons. Ischemic stroke is a major neurological disease that causes irreversible brain disorders. It increases the intracellular calcium concentration and induces apoptosis. The regulation of intracellular calcium concentration is important to maintain the function of the nervous system. Hippocalcin is a neuronal calcium sensor protein that controls intracellular calcium concentration. We investigated whether EGCG treatment regulates the expression of hippocalcin in stroke animal model and glutamate-induced neuronal damage. We performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. EGCG (50 mg/kg) or phosphate buffered saline was injected into the abdominal cavity just before MCAO surgery. The neurobehavioral tests were performed 24 h after MCAO surgery and cerebral cortex tissue was collected. MCAO damage induced severe neurobehavioral disorders, increased infarct volume, and decreased the expression of hippocalcin in the cerebral cortex. However, EGCG treatment improved these deficits and alleviated the decrease in hippocalcin expression in cerebral cortex. In addition, EGCG dose-dependently alleviated neuronal cell death and intracellular calcium overload in glutamate-exposed neurons. Glutamate exposure reduced hippocalcin expression, decreased Bcl-2 expression, and increased Bax expression. However, EGCG treatment mitigated these changes caused by glutamate toxicity. EGCG also attenuated the increase in caspase-3 and cleaved caspase-3 expressions caused by glutamate exposure. The effect of EGCG was more pronounced in non-transfected cells than in hippocalcin siRNA-transfected cells. These findings demonstrate that EGCG protects neurons against glutamate toxicity through the regulation of Bcl-2 family proteins and caspase-3. It is known that hippocalcin exerts anti-apoptotic effect through the modulation of apoptotic pathway. Thus, we can suggest evidence that EGCG has a neuroprotective effect by regulating hippocalcin expression in ischemic brain damage and glutamate-exposed cells.


Assuntos
Catequina , AVC Isquêmico , Fármacos Neuroprotetores , Animais , Apoptose , Cálcio/metabolismo , Caspase 3/metabolismo , Catequina/análogos & derivados , Ácido Glutâmico/metabolismo , Hipocalcina/genética , Hipocalcina/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Modelos Animais de Doenças
2.
Lab Anim Res ; 40(1): 8, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429854

RESUMO

BACKGROUND: Ischemic stroke is a serious neurological disorder caused by blockages in cerebral artery. Protein phosphatase 2A (PP2A) is a phosphatase that performs a critical role in cell signaling and growth. PP2A subunit B acts as a neuroprotective agent in the nerve system. Chlorogenic acid, which is mainly found in roasted coffee, has antioxidant, anti-inflammatory, and anti-apoptotic effects. We hypothesized that chlorogenic acid modulates PP2A subunit B expression in ischemic stroke models and glutamate-mediated neurons. Middle artery occlusion (MCAO) surgery was operated and chlorogenic acid (30 mg/kg) or phosphate buffer saline was treated 2 h after MCAO. The cerebral cortex was collected 24 h after surgery and the change of PP2A subunit B expression was analyzed. Glutamate and/or chlorogenic acid were treated in cultured neurons, further study was performed. RESULTS: A decrease in PP2A subunit B expression in MCAO animals was identified. Chlorogenic acid alleviated this decrease due to ischemic injury. Moreover, the number of PP2A subunit B-positive cells in the ischemic cerebral cortex was significantly decreased, chlorogenic acid alleviated this decrease. We also found protective effects of chlorogenic acid in neurons exposed to glutamate. Glutamate decreased the expression of PP2A subunit B and chlorogenic acid mitigated this decrease. Our results elucidated that chlorogenic acid performs neuroprotective functions and attenuates the reduction of PP2A subunit B by brain damage and glutamate-mediated excitotoxicity. CONCLUSIONS: We showed that chlorogenic acid attenuated the decrease of PP2A subunit B in ischemic injury and neurons exposed to glutamate. Since PP2A subunit B contributes to the protection of brain tissue, we can suggest that chlorogenic acid preserves neurons by modulating PP2A subunit B during ischemic damage.

3.
Neurosci Lett ; 825: 137701, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38395190

RESUMO

Ischemic stroke increases the production of reactive oxygen species (ROS), which can eventually lead to neuronal death. Thioredoxin is a small reductase protein that acts as an eliminator of ROS and protects neurons from brain damage. Chlorogenic acid is known as a phenolic compound that has a neuroprotective effect. We investigated the change of thioredoxin expression by chlorogenic acid in a middle cerebral artery occlusion (MCAO) animal model. Adult rats were injected intraperitoneally with phosphate buffered saline or chlorogenic acid (30 mg/kg) 2 h after MCAO. MCAO damage induced neurological defects and increased ROS and lipid peroxidation levels, however, chlorogenic acid mitigated these changes. MCAO damage reduced thioredoxin expression, which was mitigated by chlorogenic acid treatment. The interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) was decreased in MCAO animals, chlorogenic acid treatment prevented this decrease. In cultured neurons, chlorogenic acid dose-dependently attenuated glutamate-induced decreases in cell viability and thioredoxin expression. Glutamate toxicity downregulated bcl-2 and upregulated bax, cytochrome c, and caspase-3, however, chlorogenic acid attenuated these changes. The mitigating effect of chlorogenic acid was lower in thioredoxin siRNA-transfected cells than in non-transfected cells. These results provide evidence that chlorogenic acid exerts potent antioxidant and neuroprotective effects through regulation of thioredoxin and modulation of ASK1 and thioredoxin binding in ischemic brain injury. These findings indicate that chlorogenic acid exerts a neuroprotective effect by regulating thioredoxin expression in cerebral ischemia and glutamate exposure conditions.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ácido Glutâmico/farmacologia , Espécies Reativas de Oxigênio , Fármacos Neuroprotetores/farmacologia , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurônios/metabolismo , Tiorredoxinas , Apoptose , Acidente Vascular Cerebral/metabolismo
4.
Lab Anim Res ; 39(1): 3, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782340

RESUMO

BACKGROUND: Epigallocatechin gallate (EGCG) is a flavonoid compound commonly found in green tea. It exhibits antioxidant, anti-inflammatory, and neuroprotective effects in cerebral ischemia. Protein phosphatase 2 A (PP2A) is an important serine/threonine phosphatase enzyme involved in various cellular activities. PP2A subunit B is present abundantly in the brain and plays an important role in the nervous system. We investigated the effect of EGCG on the expression level of PP2A subunit B in cerebral ischemia caused by middle cerebral artery occlusion (MCAO). EGCG (50 mg/kg) or vehicle was injected into the peritoneal cavity prior to MCAO surgery. Neurological behavior tests were performed 24 h after MCAO, and right cerebral cortex tissue was collected. Cerebral ischemia caused serious neurological abnormalities, which were alleviated by EGCG administration. We screened the expression of PP2A subunits containing A, B, and C using reverse-transcription PCR. We confirmed that PP2A subunit B exhibited significant changes in MCAO animals compared to subunits A and C. We continuously examined the expression of PP2A subunit B protein in MCAO animals using Western blot analysis. RESULTS: EGCG alleviated the reduction of PP2A subunit B protein by MCAO damage. In addition, immunohistochemistry demonstrated a decrease in the number of PP2A subunit B-positive cells in the cerebral cortex, and EGCG attenuated this decrease. Maintenance of PP2A subunit B is important for normal brain function. CONCLUSION: Therefore, our findings suggest that EGCG exerts neuroprotective effects against cerebral ischemia through modulation of PP2A subunit B expression.

5.
Neurochem Res ; 48(2): 487-501, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36245066

RESUMO

Ischemic stroke is a neurological disease that causes brain damage by increasing oxidative stress and ion imbalance. Retinoic acid is a major metabolite of vitamin A and regulates oxidative stress, calcium homeostasis, and cell death. Intracellular calcium is involved in neuronal growth and synaptic plasticity. Parvalbumin is a calcium-binding protein that is mainly expressed in brain. In this study, we investigated whether retinoic acid has neuroprotective effects by controlling intracellular calcium concentration and parvalbumin expression in ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected into the abdominal cavity for four days before surgery and cerebral cortices were collected 24 h after MCAO for further studies. MCAO damage induced neurological deficits and histopathological changes and decreased parvalbumin expression. However, retinoic acid treatment alleviated these changes. In cultured neurons, glutamate (5 mM) exposure induced neuronal cell death, increased intracellular calcium concentration, and decreased parvalbumin expression. Retinoic acid treatment attenuated these changes against glutamate toxicity in a dose-dependent manner. It also regulates glutamate induced change in bcl-2 and bax expression. The mitigation effects of retinoic acid were greater under non-transfection conditions than under parvalbumin siRNA transfection conditions. Our findings showed that retinoic acid modulates intracellular calcium concentration and parvalbumin expression and prevents apoptosis in ischemic brain injury. In conclusion, retinoic acid contributes to the preservation of neurons from ischemic stroke by controlling parvalbumin expression and apoptosis-related proteins.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Ratos , Animais , Ratos Sprague-Dawley , AVC Isquêmico/metabolismo , Parvalbuminas/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Cálcio/metabolismo , Isquemia Encefálica/metabolismo , Apoptose , Infarto da Artéria Cerebral Média/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo
6.
Lab Anim Res ; 38(1): 13, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562751

RESUMO

BACKGROUND: Retinoic acid is a major metabolite of vitamin A and exerts beneficial effects including anti-oxidant and anti-inflammatory activities in neurons. The ubiquitin-proteasome system is an important biological system that regulates cell survival. Ubiquitination regulates protein degradation and plays an important role in oxidative stress. Deubiquitinating enzymes cleave ubiquitin from proteins and control ubiquitination-induced degradation. We detected decreases in ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in cerebral ischemic damage. In this study, we investigated whether retinoic acid regulates the expression of deubiquitinating enzymes ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in cerebral ischemic injury. Right middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemic damage in male rats. Retinoic acid (5 mg/kg) or vehicle was intraperitoneally injected every day from 4 days before surgery. Neurological behavioral tests were performed 24 h after MCAO, and right cerebral cortical tissues were collected. RESULTS: MCAO damage caused neurological behavioral dysfunction, and retinoic acid alleviated these deficits. The identified proteins decreased in MCAO animals with vehicle, while retinoic acid treatment attenuated these decreases. The results of proteomic study were confirmed by a reverse transcription-PCR technique. Expressions of ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 were decreased in MCAO animals treated with vehicle. Retinoic acid treatment alleviated these MCAO-induced reductions. The ubiquitin-proteasome system plays an essential role in maintaining cell function and preserving cell shape against ischemic damage. CONCLUSIONS: These findings suggest that retinoic acid regulates ubiquitin- and proteasome-related proteins including ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in a brain ischemia model. Changes in these proteins are involved in the neuroprotective effects of retinoic acid.

7.
J Vet Sci ; 23(2): e26, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35187882

RESUMO

BACKGROUND: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol found in plant and has neuroprotective effects against neurodegenerative diseases. OBJECTIVES: We investigated whether quercetin regulates apoptosis by modulating parvalbumin expression in glutamate induced neuronal damage. METHODS: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 24 h after glutamate treatment and intracellular calcium concentration and parvalbumin expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was performed to detect the relation between parvalbumin and apoptosis. RESULTS: Glutamate reduced cell viability and increased intracellular calcium concentration, while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin siRNA transfected and non-transfected cells. The alleviative effect of quercetin was statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and increased bax expressions, while quercetin alleviated these changes. The alleviative effect of quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells. CONCLUSIONS: These results demonstrate that parvalbumin contributes to the maintainace of intracellular calcium concentration and the prevention of apoptosis, and quercetin modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest that quercetin performs neuroprotective function against glutamate toxicity by regulating parvalbumin expression.


Assuntos
Ácido Glutâmico , Parvalbuminas , Animais , Apoptose , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/farmacologia , Morte Celular , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Parvalbuminas/genética , Parvalbuminas/metabolismo , Parvalbuminas/farmacologia , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Neurosci Lett ; 773: 136495, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35108588

RESUMO

Ischemic stroke is the most common type of stroke and is caused by vascular closure. Chlorogenic acid is a polyphenolic compound that is present in various plants. It is used as a traditional oriental medicine because of its anti-oxidant and anti-inflammatory properties. We investigated whether chlorogenic acid mediates neuroprotective effects by regulating pro-inflammatory proteins. Focal cerebral ischemia was induced through middle cerebral artery occlusion (MCAO) surgery in adult rats. Chlorogenic acid (30 mg/kg) or vehicle was injected into the abdominal cavity 2 h after MCAO. Rats were sacrificed 24 h after MCAO surgery and brain tissues were isolated immediately. MCAO caused histopathological changes in the ischemic cerebral cortex, and chlorogenic acid attenuated these changes. Chlorogenic acid reduced MCAO-induced reactive oxygen species generation and oxidative stress increase in the cerebral cortex. Furthermore, cerebral ischemia increased the expression of ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), which are microglia and astrocyte activation markers, respectively. However, chlorogenic acid prevented MCAO-induced these increases. MCAO damage also increased the expression of nuclear factor-κB (NF-κB), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α). Chlorogenic acid treatment attenuated these increases caused by MCAO. These proteins are representative pro-inflammatory markers. This study confirmed that chlorogenic acid exerts an anti-oxidative effect and elucidated anti-inflammatory effect through regulating NF-κB, IL-1ß, and TNF-α on cerebral ischemia. Thus, we can suggest that chlorogenic acid has neuroprotective effects by reducing oxidative stress and controlling pro-inflammatory proteins against cerebral ischemic damage.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Anti-Inflamatórios/farmacologia , Isquemia Encefálica/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
9.
Neurochem Res ; 46(11): 3035-3049, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34327632

RESUMO

Epigallocatechin gallate (EGCG) is one of polyphenol that is abundant in green tea. It has anti-oxidative activity and exerts neuroprotective effects in ischemic brain damage. Ischemic conditions induce oxidative stress and result in cell death. Thioredoxin is a small redox protein that plays an important role in the regulation of oxidation and reduction. This study was designed to investigate the regulation of thioredoxin by EGCG in ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia in male Sprague-Dawley rats. The EGCG (50 mg/kg) or was administered before MCAO surgical operation. Neurological behavior test, reactive oxygen species (ROS), and lipid peroxidation (LPO) measurement were performed 24 h after MCAO. The cerebral cortex was isolated for further experiments. EGCG alleviated MCAO-induced neurological deficits and increases in ROS and LPO levels. EGCG also ameliorated the decrease in thioredoxin expression by MCAO. This finding was confirmed using various techniques such as Western blot analysis, reverse transcription PCR, and immunofluorescence staining. Results of immunoprecipitation showed that MCAO decreases the interaction between apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin, while EGCG treatment attenuates this decrease. EGCG also attenuated decrease of cell viability and thioredoxin expression in glutamate-exposed neuron in a dose-dependent manner. It alleviated the increase of caspase-3 by glutamate exposure. However, this effect of EGCG on caspase-3 change was weakened in thioredoxin siRNA-transfected neurons. These findings suggest that EGCG exerts a neuroprotective effect by regulating thioredoxin expression and modulating ASK1 and thioredoxin binding in ischemic brain damage.


Assuntos
Isquemia Encefálica/metabolismo , Catequina/análogos & derivados , Ácido Glutâmico/toxicidade , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Tiorredoxinas/biossíntese , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Transformada , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Neurosci Lett ; 760: 136085, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34174343

RESUMO

Cerebral ischemia leads to neuronal cell death, causes neurological disorder and permanent disability. Chlorogenic acid has antioxidant, anti-inflammatory, and anti-apoptotic properties. This study investigated the neuroprotective effects of chlorogenic acid against cerebral ischemia. Focal cerebral ischemia was induced in male adult rats via middle cerebral artery occlusion (MCAO). Chlorogenic acid (30 mg/kg) or vehicle was injected in the intraperitoneal cavity 2 h after MCAO operation. Neurological behavior tests were performed 24 h after MCAO, brain edema and infarction were measured. Oxidative stress was assessed by investigating the levels of reactive oxygen species (ROS) and lipid peroxidation (LPO) levels. MCAO damage leaded to severe neurobehavioral deficits, increased ROS and LPO levels, and induced brain edema and infarction. MCAO damage caused histopathological damages and increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the cerebral cortex. However, chlorogenic acid treatment improved neurological behavioral deficits caused by MCAO and attenuated the increase in ROS and LPO levels. It also alleviated MCAO-induced brain edema, infarction, and histopathological lesion. Chlorogenic acid treatment attenuated the increase in the number of TUNEL-positive cells in the cerebral cortex of MCAO animals. We also investigated caspase proteins expression to elucidate the neuroprotective mechanism of chlorogenic acid. Caspase-3, caspase-7, and poly ADP-ribose polymerase expression levels were increased in the MCAO damaged cortex, while chlorogenic acid mitigated these increases. These results showed that MCAO injury leads to severe neurological damages and chlorogenic acid exerts neuroprotective effects by regulating oxidative stress and caspase proteins expressions. Thus, our findings suggest that chlorogenic acid acts as a potent neuroprotective agent by modulating the apoptotic-related proteins.


Assuntos
Ácido Clorogênico/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ácido Clorogênico/uso terapêutico , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia
11.
Neurosci Lett ; 757: 135979, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34023410

RESUMO

Cerebral ischemia is a neurological disorder that leads to cognitive decline and high mortality. Retinoic acid is a metabolite of vitamin A that has anti-inflammatory and anti-apoptotic effects. This study investigated whether retinoic acid prevents neuronal cell damage on focal cerebral ischemia through modulating apoptosis signaling pathway. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia in adult male rats. Retinoic acid (5 mg/kg) or vehicle was injected intraperitoneally for 4 days prior to MCAO. Neurological behavior deficit tests were performed 24 h after MCAO. Brain edema and infarct volume were measured, and TUNEL histochemistry was carried out. We also investigated the changes in apoptosis-related proteins including bcl-2 family proteins and caspases. MCAO injury induced severe neurological behavior deficits and brain edema. It also increased infarct volume, histopathological damages, and the number of TUNEL-positive cells in cerebral cortex. However, retinoic acid pretreatment attenuated MCAO-induced neurological behavior deficits, brain edema, and infarction. It also alleviated histopathological lesion and decreased the number of TUNEL-positive cells. Bcl-2 and bax proteins are representative bcl-2 family proteins. MCAO injury induced a decrease in bcl-2 expression and an increase in bax expression, and retinoic acid pretreatment alleviated these changes. MCAO injury caused a decrease in bcl-2/bax expression ratio in cerebral cortex, while retinoic acid restored this decrease by MCAO. Moreover, our result showed increases in caspase-9, caspase-3, PARP protein levels in MCAO-operated animals. Retinoic acid pretreatment prevented these increases. We identified the changes in cleaved forms of these proteins, similar to the changes in full-length protein. Activation of caspases and PARP proteins are considered to be representative apoptosis indicators. This study showed that retinoic acid regulates bcl-2 family proteins and caspase proteins in focal cerebral ischemia. Thus, our findings demonstrate that retinoic acid exhibits a neuroprotective effect against ischemic damage by modulating apoptosis signaling pathway.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tretinoína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Tretinoína/uso terapêutico
12.
J Vet Med Sci ; 83(6): 916-926, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33883340

RESUMO

Ischemic stroke is a fatal disease that has long-term disability. It induces excessive oxidative stress generation and cellular metabolic disorders, result in tissue damage. Epigallocatechin gallate (EGCG) is a naturally derived flavonoid with strong antioxidant property. We previously reported the neuroprotective effect of EGCG in ischemic stroke. The defensive mechanisms of stroke are very diverse and complex. This study investigated specific proteins that are regulated by EGCG treatment in the ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. EGCG (50 mg/kg) or vehicle was intraperitoneally administered just prior to MCAO. MCAO induced severe neurological deficits and disorders. EGCG treatment alleviated these neurological disorder and damage. Cerebral cortex was used for this study. Two-dimensional gel electrophoresis and mass spectrometry were performed to detect the proteins altered by EGCG. We identified various proteins that were changed between vehicle- and EGCG-treated animals. Among these proteins, isocitrate dehydrogenase, dynamin-like protein 1, and γ-enolase were decreased in vehicle-treated animals, while EGCG treatment prevented these decreases. However, pyridoxal-5'-phosphate phosphatase and 60 kDa heat shock protein were increased in vehicle-treated animals with MCAO injury. EGCG treatment attenuated these increases. The changes in these proteins were confirmed by Western blot and reverse transcription-PCR analyses. These proteins were associated with cellular metabolism and neuronal regeneration. Thus, these findings can suggest that EGCG performs a defensive mechanism in ischemic damage by regulating specific proteins related to energy metabolism and neuronal protection.


Assuntos
Catequina , Doenças dos Roedores , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Córtex Cerebral , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/veterinária , Proteômica , Ratos , Ratos Sprague-Dawley
13.
J Vet Med Sci ; 83(4): 724-733, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33716268

RESUMO

Glutamate induces neuronal damage by generating oxidative stress and neurotoxicities. The neurological damage caused by glutamate is more severe during brain development in newborns than in adults. Resveratrol is naturally present in a variety of fruits and medicinal plants and exerts a neuroprotective effect against brain damage. The goal of this study was to evaluate the neuroprotective effects of resveratrol and to identify changed proteins in response to resveratrol treatment during glutamate-induced neonatal cortical damage. Sprague-Dawley rat pups (7 days old) were randomly divided into vehicle, resveratrol, glutamate, and glutamate and resveratrol groups. The animals were intraperitoneally injected with glutamate (10 mg/kg) and/or resveratrol (20 mg/kg) and their brain tissue was collected 4 hr after drug administration. Glutamate exposure caused severe histopathological changes, while resveratrol attenuated this damage. We identified regulated proteins by resveratrol in glutamate-induced cortical damaged tissue using two-dimensional gel electrophoresis and mass spectrometry. Among identified proteins, we focused on eukaryotic initiation factor 4A2, γ-enolase, protein phosphatase 2A subunit B, and isocitrate dehydrogenase. These proteins decreased in the glutamate-treated group, whereas the combination treatment of glutamate and resveratrol attenuated these protein reductions. These proteins are anti-oxidant proteins and anti-apoptotic proteins. These results suggest that glutamate induces brain cortical damage in newborns; resveratrol exerts a neuroprotective effect by controlling expression of various proteins with anti-oxidant and anti-apoptotic functions.


Assuntos
Doenças dos Roedores , Estilbenos , Animais , Animais Recém-Nascidos , Ácido Glutâmico , Infarto da Artéria Cerebral Média/veterinária , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia , Estilbenos/farmacologia
14.
Lab Anim Res ; 37(1): 9, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632310

RESUMO

BACKGROUND: Calcium is a critical factor involved in modulation of essential cellular functions. Parvalbumin is a calcium buffering protein that regulates intracellular calcium concentrations. It prevents rises in calcium concentrations and inhibits apoptotic processes during ischemic injury. Quercetin exerts potent antioxidant and anti-apoptotic effects during brain ischemia. We investigated whether quercetin can regulate parvalbumin expression in cerebral ischemia and glutamate toxicity-induced neuronal cell death. Adult male rats were treated with vehicle or quercetin (10 mg/kg) 30 min prior to middle cerebral artery occlusion (MCAO) and cerebral cortical tissues were collected 24 h after MCAO. We used various techniques including Western blot, reverse transcription-PCR, and immunohistochemical staining to elucidate the changes of parvalbumin expression. RESULTS: Quercetin ameliorated MCAO-induced neurological deficits and behavioral changes. Moreover, quercetin prevented MCAO-induced a decrease in parvalbumin expression. CONCLUSIONS: These findings suggest that quercetin exerts a neuroprotective effect through regulation of parvalbumin expression.

15.
Lab Anim Res ; 36: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995332

RESUMO

Glutamate induces neurotoxicity during brain development, causing nerve damage. Protein phosphatase 2A (PP2A) is a type of serine/threonine phosphatase that regulates various biological functions. Among the PP2A subunit types, subunit B is abundant in brain tissue and plays an essential role in the nervous system. This study investigated changes in PP2A subunit B expression through glutamate exposure in the cerebral cortex of newborn rats. Sprague-Dawley rat pups (7 days after birth) were injected intraperitoneally with vehicle or glutamate (10 mg/kg). After 4 h of drug treatment, the brain tissue was isolated and fixed for morphological study. In addition, the cerebral cortex was collected for RNA and protein works. We observed severe histopathological changes including swollen neuron and atrophied dendrite in the glutamate exposed cerebral cortex. Glutamate exposure leads to a decrease in PP2A subunit B. Reverse-transcription PCR and Western blot analyses confirmed that glutamate induces a decrease of PP2A subunit B in the cerebral cortex of newborn rats. Moreover, immunohistochemical study showed a decrease in PP2A subunit B positive cells. The reduction of PP2A subunit B expression is considered an indicator of neurodegenerative damage. These results suggest that glutamate exposure causes neuronal damage in the cerebral cortex of new born rats through a decrease in PP2A subunit B.

16.
Lab Anim Res ; 36: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983956

RESUMO

Baicalin is a natural flavonoid that exerts a variety of pharmaceutical effects such as anti-inflammatory and antioxidant. Lipopolysaccharide (LPS) is an endotoxin that releases inflammatory cytokines and induces inflammatory response. This study was investigated the anti-inflammatory mechanism of baicalin against LPS-induced inflammatory response in the hippocampus. Adult mice were randomly grouped into control, LPS-treated, and LPS and baicalin co-treated animals. LPS (250 µg/kg/day) and baicalin (10 mg/kg/day) were administered intraperitoneally for 7 consecutive days. We measured neuroglia cells activation and inflammatory factors activation using Western blot analysis and immunofluorescence staining techniques. Ionized calcium binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) are widely used as microglia and astrocyte markers, respectively. LPS treatment increased Iba-1 and GFAP expression, while baicalin co-treatment attenuated this overexpression. Nuclear factor-kappa B (NF-κB) is a key mediator of inflammation. Baicalin co-treatment alleviated LPS-induced increase of NF-κB in the hippocampus. In addition, LPS treatment upregulated pro-inflammatory cytokines including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). However, baicalin co-treatment prevented LPS-induced increases of IL-1ß and TNF-α in the hippocampus. Results from the present study showed that baicalin suppresses LPS-induced neuroinflammation by regulating microglia and astrocyte activation and modulating inflammatory factors in the hippocampus. Thus, these results demonstrate that baicalin has neuroprotective effect by alleviates microglia and astrocyte activation and modulates inflammatory response by suppressing NF-κB expression in hippocampus with neuroinflammation caused by LPS.

17.
Lab Anim Res ; 36: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257920

RESUMO

Glutamate is a representative excitatory neurotransmitter. However, excessive glutamate exposure causes neuronal cell damage by generating neuronal excitotoxicity. Excitotoxicity in neonates caused by glutamate treatment induces neurological deficits in adults. The 14-3-3 family proteins are conserved proteins that are expressed ubiquitously in a variety of tissues. These proteins contribute to cellular processes, including signal transduction, protein synthesis, and cell cycle control. We proposed that glutamate induces neuronal cell damage by regulating 14-3-3 protein expression in newborn animals. In this study, we investigated the histopathological changes and 14-3-3 proteins expressions as a result of glutamate exposure in the neonatal cerebral cortex. Rat pups at post-natal day 7 were intraperitoneally administrated with vehicle or glutamate (10 mg/kg). Animals were sacrificed 4 h after treatment, and brain tissues were fixed for histological study. Cerebral cortices were isolated and frozen for proteomic study. We observed serious histopathological damages including shrunken dendrites and atypical neurons in glutamate-treated cerebral cortices. In addition, we identified that 14-3-3 family proteins decreased in glutamate-exposed cerebral cortices using a proteomic approach. Moreover, Western blot analysis provided results that glutamate treatment in neonates decreased 14-3-3 family proteins expressions, including the ß/α, ζ/δ, γ, ε, τ, and η isoforms. 14-3-3 proteins are involved in signal transduction, metabolism, and anti-apoptotic functions. Thus, our findings suggest that glutamate induces neonatal neuronal cell damage by modulating 14-3-3 protein expression.

18.
J Vet Med Sci ; 82(5): 639-645, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32224555

RESUMO

Cerebral ischemia is a neurological disorder that causes permanent disability and is sometimes fatal. Epigallocatechin gallate (EGCG) is a natural polyphenol that exerts beneficial antioxidant and anti-inflammatory effects. The aim of this study was to investigate the neuroprotective effects of EGCG against cerebral ischemia. Middle cerebral artery occlusion was surgically initiated to induce focal cerebral ischemia in adult male rats. EGCG (50 mg/kg) or vehicle was intraperitoneally injected just prior to middle cerebral artery occlusion (MCAO) induction. Neuronal behavior tests were performed 24 hr after MCAO. Brain tissues were isolated to evaluate infarct volume, histological changes, apoptotic cell death, and caspase-3 and poly ADP-ribose polymerase (PARP) levels. MCAO injury led to serious functional neurological deficits and increased infarct volume. Moreover, it induced histopathological lesions and increased the numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the cerebral cortex. However, EGCG improved MCAO-induced neurological deficits and reduced infarct volume, alleviated histopathological changes, and decreased TUNEL-positive cells in the cerebral cortex of MCAO rats. Western blot analysis showed increases of caspase-3 and PARP expression levels in MCAO rats with vehicle, whereas EGCG administration alleviated these increases after MCAO injury. These results demonstrate that EGCG exerts a neuroprotective effect by regulating caspase-3 and PARP proteins during cerebral ischemia. In conclusion, we suggest that EGCG acts as a potent neuroprotective agent by modulating the apoptotic signaling pathway.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Catequina/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Catequina/farmacologia , Infarto Cerebral , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Infarto da Artéria Cerebral Média , Masculino , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos Sprague-Dawley
19.
Neuroscience ; 430: 47-62, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31982469

RESUMO

Calcium acts as a second messenger that mediates physiologic functions, such as metabolism, cell proliferation, and apoptosis. Hippocalcin is a neuronal calcium sensor protein that regulates intracellular calcium concentration. Moreover, it prevents neuronal cell death from oxidative stress. Quercetin has excellent antioxidant properties and preventative effects. We studied modulation of hippocalcin expression by quercetin treatment in cerebral ischemic injury and glutamate-induced neuronal cell damage. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO). Male Sprague-Dawley rats were injected with vehicle or quercetin (10 mg/kg) 1 h prior to pMCAO, and cerebral cortical tissues were isolated 24 h after pMCAO. Quercetin improved pMCAO-induced neuronal movement deficit and infarction. pMCAO induced a decrease in hippocalcin expression in the cerebral cortex. However, quercetin treatment attenuated this pMCAO-induced decrease. In cultured hippocampal cells, glutamate excitotoxicity dramatically increased the intracellular calcium concentration, whereas quercetin alleviated intracellular calcium overload. Moreover, Western blot and immunocytochemical studies showed reduction of hippocalcin expression in glutamate-exposed cells. Quercetin prevented this glutamate-induced decrease. Furthermore, caspase-3 expression in hippocalcin siRNA transfection conditions is higher than caspase-3 expression in un-transfection conditions. Quercetin treatment attenuated the increase of caspase-3. Taken together, these results suggest that quercetin exerts a preventative effect through attenuation of intracellular calcium overload and restoration of down-regulated hippocalcin expression during ischemic injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Isquemia Encefálica/tratamento farmacológico , Cálcio/metabolismo , Hipocalcina/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/farmacologia , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley
20.
Neuroscience ; 428: 38-49, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31874239

RESUMO

Quercetin is a bioactive flavonoid which abundantly exists in vegetables and fruits. Quercetin exerts a neuroprotective effect against cerebral ischemia. Thioredoxin acts as antioxidant by regulating redox signaling. This study investigated whether quercetin regulates thioredoxin expression in focal cerebral ischemia and glutamate-induced neuronal cell death. Male Sprague Dawley rats (210-230 g) were intraperitoneally injected with vehicle or quercetin (10 mg/kg) 1 h prior to middle cerebral artery occlusion (MCAO). Cerebral cortex was collected 24 h after MCAO. MCAO led to neurological movement deficits, brain edema, and serious histopathological damages in cerebral cortex, and quercetin alleviated these damages following MCAO. We observed the change of thioredoxin expression in MCAO animals with quercetin using proteomic approach, reverse-transcription PCR, and Western blot analyses. Thioredoxin expression decreased in vehicle-treated MCAO animals, while quercetin attenuated this decrease. Moreover, quercetin treatment alleviated the decrease in the number of thioredoxin-positive cells in cerebral cortex of MCAO animals. Furthermore, immunoprecipitation analysis demonstrated that interaction of apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin was decreased in MCAO animals with vehicle, while quercetin prevented MCAO-induced decrease in these binding. In addition, quercetin also alleviated the reduction of cell viability and the decrease in thioredoxin expression in glutamate-treated hippocampal cell line and primary cultures of cortical neurons. However in thioredoxin-silenced cortical neuron, anti-apoptotic effect of quercetin was decreased. Thus, changes of thioredoxin expression by quercetin may contribute to the neuroprotective effect of quercetin in focal cerebral ischemia. Our findings suggest that quercetin mediates its neuroprotective function by regulation of thioredoxin expression and maintenance of interaction between ASK1 and thioredoxin.


Assuntos
Edema Encefálico/tratamento farmacológico , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Quercetina/farmacologia , Tiorredoxinas/metabolismo , Animais , Edema Encefálico/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...